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1. INTRODUCTION

Thin-walled curved beams with closed and open cross-sections are widely used in the
construction of bridges. Although there are many methods (e.g., methods of
"nite-shell-element, "nite-strip-element and folded-plate, etc.) to analyze these structures,
for reasons that are well known, "nite beam element method has many advantages in
economy and analysis. For the analytical method of curved thin-walled beams, the general
solution of the static problem was given by Vlasov [1] and Dabrowski [2]. Later, some
researchers developed foregoing theories by adding shear lag e!ect and neglecting
secondary warping shear e!ect caused by warping torsion in curved thin-walled beams
[3}5]. As to "nite element analysis, for the problem researchers have published many
papers on the static and dynamic analysis of curved box beams [6}8] over the past decades,
But summarily, the procedures utilizing curved beam element method and considering both
shear lag and warping torsion e!ects, especially for the dynamical analysis of curved
thin-walled multicell box beams, may still be lacking.
For the problem mentioned above, this paper presents a "nite curved beam element

method of analyzing the static and dynamic behaviors of curved thin-walled box beam
bridge based on the energy principle. In the procedure, the shear lag, warping torsion and
rotational inertia e!ects are taken into account to formulate the sti!ness matrix and mass
matrix. In the application example, free vibration characteristics and responses of the
normal stress and vertical displacement to static load, moving load and earthquake load
were analyzed, some meaningful results were obtained which can provide reference for
structure designer.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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2. STATIC BACKGROUND OF CURVED BOX BEAM ELEMENT

The layout of curved thin-walled multicell box beam element with corresponding circular
cylindrical co-ordinate system is shown in Figure 1. The translation of cross-section in x, y,
z directions is denoted as u, v, w respectively. The angular rotation of cross-section about x-,
and y-axis and shear center are denoted as �

�
, �

�
, �

�
respectively. The warping function

associated with the warping torsion and shear lag e!ects are denoted as �, � respectively.
Assuming that shear lag-induced #ange axial warping displacement along the #anges can

be expressed by
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where f (x, y) is the shear lag-induced warping modality, w
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(x) is the non-uniform

distribution function along the #anges which can be expressed by a cubic parabola for
signal cell or multicell box beams [9], w
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� is the radius of curvature at any point.
Considering the in#uence of curvature, the shear lag-induced normal stress and shear

stress can be obtained, respectively, by
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where && � '' denotes (d/dz). Obviously, equation (3) satis"es the equilibrium condition
�
�
�
�
dA"0.

The shear lag-induced vertical bending moment M
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can be obtained by
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Considering equations (2) and (4), the total vertical bending moment and the
corresponding normal stress can be obtained, respectively, by
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Figure 1. Curved box beam element.
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The total normal stress is
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where N is the axial force, M
�
is the lateral bending moment, B is the bi-moment, 
L is

a fan-shaped co-ordinate (unitage of torsion warping deformation), M
�
and M

��
are

determined by M
��
, B and M

(
(see equations (11) and (12)).

Neglecting the strain energy due to the bending shear strain, the strain energy stored
within the curved box beam element can be given by
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in which, the fourth item is caused by secondary warping shear, ¹
�	
is St Venant's torque,

¹�L is the warping torque.
The external loading-induced potential energy can be given by
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where Q is the shear force, q
�
, q

�
, and q

�
are the distributed loads acting on the centroid of

beam cross-section, m
�
is the distributed torque about shear center, M

��
is the sum of

vertical bending moment and coupling of bi-moment, M
(

is the internal force
corresponding to �.
The total potential energy can be given by

�";
�
#;

�
. (10)

Combining equations (8)}(10) via equations (3) and (6) and then, according to the principle
of minimum potential energy ��"0, the internal forces corresponding to �

�
, � are given as
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For the beam element, we let m
�
"m�

�
"0. Omitting the items of higher order, the

bi-moment with consideration of shear lag e!ect can be expressed as
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where I
�
is the central moment of inertia, K



is St Venant's torsional constant, 
"

1!K
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3. DYNAMICAL EQUATIONS FOR CURVED BOX BEAM ELEMENT

For a beam element, neglecting the di!erence between centroid and shear center and
e!ect of couplings, based on the theory of dynamics, the kinetic energy of beam element due
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to velocity vector and angular velocity vector can be expressed as
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in which the "fth and sixth items are caused, respectively, by torsional warping e!ect and
shear lag e!ect, � denotes the mass density, ` ) '' denotes (d/dt).
Utilizing polynomial as interpolation functions, the internal displacement vector of an

element is given as

�"[N�]���� (�"u, v,w,�,�), (15)
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The equivalent nodal loading vector corresponding to � can be expressed as
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Substitute equation (15) into equations (8), (9) and (16), respectively, and convert boundary
forces in equation (9) into nodal force. Then, according to the Lagrange equations, the
dynamic equations of curved beam element can be determined by
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where [C�] is the damping matrix corresponding to �. Equation (17) can be expressed as

[M]���$ ��#[C]���Q ��#[K]�����"�F��#�R��, (18)

where [K]� is the element sti!ness matrix, [M]� is the element mass matrix, [C]� is the
element damping matrix, ���� is the element nodal displacement vector, �F�� is the element
nodal loading vector, �R�� is the element equivalent nodal loading vector. For convenience,
the above vectors can be arranged in the following order:
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By element combination the dynamic responses of a carved bridge to moving load or
seismic stimulation are determined by the following equation:

[M]��$ �#[C]��Q �#[K]���"�F�, (22)

where [M], [C], and [K] are the global mass, global damping, and global sti!ness matrix,
respectively, ��� and �F� are the global nodal displacement and the global nodal loading
vector respectively. In this paper, damping is assumed to be Rayleigh damping .
The generalized eigenvalue problem of free vibration equations of structure without

damping is obtained by

[K]���"
�[M]���, (23)

where 
2 is the eigenvalue, ��� is the eigenvector.
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For a moving concentrated loading vector �P��"[P
�
P
�
P
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]�, the element

distributed loading vector is
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where � is the delta function, z is the position co-ordinate of moving loading, v is the velocity
of moving loading vector.
By substituting equation (24) into the general calculating formula of equivalent nodal

loads equation (16), the element equivalent nodal loading vector �R�� can be obtained, and
then, by co-ordinate transformation and elements combination, global nodal vector �F� can
be determined.
For the seismic response analysis of the curved box beam bridge, vector �F� is given by

�F�"![M]��$ �g , (25)

where ��$ �g is the earthquake acceleration.

4. APPLICATION EXAMPLES

Example 1. The layout of a two-cell curved continuous box beam with two equal spans is
shown in Figure 2, the values used for elastic modulus, shear modulus, and mass density are
E"3)28 Gpa; G"1)26 Gpa; and �"2915)25 kg/m�. The curve length of every span and
the wall thickness are l/2"91)6 cm, and t"0)5 cm.

When a concentrated load P
�
"200 N acts on the inner web (point D) and moves with

a speed of 0)229 m/s along the longitudinal direction of the curved beam, the responses of
normal stresses at point F and vertical displacements at centroid on b}b section of this
girder are calculated by using the present approach with eight equal curved beam elements.
The numerical results of normal stress at point F (where the maximal stress occurs) on the
section b}b are depicted in Figures 3 and 4 from which we can see that dynamic normal
stress is 27)3% larger than the static normal stress, so when a curved box girder is subjected
to a moving load, the impact e!ects of moving load on girder should be considered.
For the validation of the present approach, the structural analysis program SAPIV [10]

was used here too with structure been divided by 120 shell elements. When a concentrated
Figure 2. Example 1 and its cross-section.
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TABLE 1

Comparison of normal stress at point F on section b}b of Example 1 among various
results (MPa)

Present curved box beam element

Bending
induced value

Warping
torsion induced

value

Shear lag
induced value

Total value
Shell element

(SAPIV) Model test

0)27 0)378 0)03 0)678 0)643 0)658
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load P acts on section b}b (mid-span), for normal stress results at point F of section b}b its
comparison among various procedures and its inscape are shown in Table 1, which shows
that numerical results obtained by the present approach, SAPIV program, and model test
are in good agreement.
Table 2 presents the "rst "ve natural frequencies of the beam calculated by using the

present approach (with and without consideration of shear lag and warping torsion e!ects)
and SAPIV program respectively. The data show that the results of the present approach
with consideration of shear lag and warping torsion e!ects, especially for higher mode
frequency, are closer to the results obtained from the shell element method of SAPIV
program than those of the one without considering shear lag and warping torsion e!ects.
The seismic responses of normal stresses at point F and vertical displacements at centroid

on b}b section of the structure to EL center wave (acceleration peak value is assumed to be



TABLE 2

¹he ,rst ,ve natural frequencies of Example 1 (Hz)

Results of present curved box beam element

Mode no.
Without shear lag and
warping torsion e!ects

With shear lag and
warping torsion e!ects

Results of shell
element (SAPIV)

1 76)13 81)58 78)76
2 114)89 109)86 105)58
3 117)70 116)95 111)88
4 182)46 153)83 145)81
5 220)40 175)64 164)76
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Figure 5. The seismic response of normal stress at point F on section b}b of Example 1.**, Present; } }} } },
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0)2g) in the "rst 4 s are shown, respectively, in Figures 5 and 6 from which we can see that
the di!erence between results of the present procedure and results of SAPIV is small and
both maximum values of normal stress and vertical displacement occur at time"3)3 s.

Example 2. A cantilever curved single-cell box beam subjected to a concentrated load
P at the tip is shown in Figures 7 and 8. Some of its geometry and material properties are
given as: E"30 000 ksi, G"11 600 ksi, �"5)555�10�	 kip/in�, radius of curvature
R"2291)88 in, curve length l"100 ft.

Table 3 shows the convergence of vertical de#ection with �, the number of curved beam
elements, and closed-form solution of vertical displacements obtained by Dabrowski [2].
Table 4 shows the convergence of the "rst "ve natural frequencies with �. The data show
that for the case where vertical displacements at various sections x/l are calculated, the limit



Figure 7. Sketch of Example 2.

Figure 8. Cross-section of the beam in Example 2.

TABLE 3

Convergence of vertical de-ection and its comparison with closed-form solution
for Example 2 (ft)

Cross-section
z/l

Present results with �
Closed-form solution

Dabrowski [2]5 10 15

0 0)000 0)000 0)000 0)000
0)2 0)098 0)098 0)098 0)097
0)4 0)371 0)371 0)371 0)367
0)6 0)777 0)777 0)777 0)769
0)8 1)273 1)273 1)273 1)260
1)0 1)812 1)812 1)812 1)792
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of convergence can be reached by �"5 and due to the consideration of shear lag, the values
of convergence of the present approach loosely-"t the closed-form solution (without
considering shear lag), for the case where natural frequencies are calculated, the limit of
convergence can be reached by �"5 for lower mode frequencies and decreases with
increasing � for higher mode frequencies, but convergent tendency is a stationary process.

5. CONCLUSIONS

The curved box beam "nite element method presented by this paper has considered both
shear lag and warping torsion (including secondary warping shear) e!ects and contribution



TABLE 4

Convergence of the ,rst ,ve natural frequencies of Example 2 (Hz)

Present results with �

Mode no. 5 10 15 20

1 0)6436 0)6436 0)6436 0)6436
2 1)5689 1)5688 1)5688 1)5688
3 3)8665 3)8612 3)8609 3)8609
4 9)9081 9)8943 9)8935 9)8934
5 11)088 10)977 10)971 10)970
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of rotational inertia to mass matrix, so it can be used to analyze accurately the static and
dynamic behaviors of curved thin-walled box bridge with single cell or multi-cell.
Compared with the proceeding of "nite shell element, the present approach is more concise
and easy to use for the engineering designer. In the application examples, the numerical
results obtained by the present approach show fair agreement with those obtained by model
test or "nite shell element method and convergence of elements presented by this paper is
good.
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